

Ce document a été numérisé par le <u>CRDP de Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

SESSION 2009

BREVET DE TECHNICIEN SUPERIEUR

SPÉCIALITÉS	COEF.	DURÉE
CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE	2	3
SYSTÈMES ÉLECTRONIQUES	2	3

MATHÉMATIQUES

Le sujet comprend 7 pages, numérotées de 1 à 7. Les pages 6 et 7 sont à rendre avec la copie. Le formulaire officiel de mathématiques est joint au sujet. Il comprend 7 pages, numérotées de 1 à 7.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

L'usage des instruments de calcul et du formulaire officiel de mathématiques est autorisé.

Code sujet MATGRA2

Exercice 1 (9 points)

Le but de cet exercice est d'établir, avec un minimum de calculs, le développement en série de Fourier de fonctions périodiques rencontrées en électricité.

1. On considère un entier naturel n strictement positif. Montrer que :

$$\int_0^1 t \cos(n\pi t) dt = \frac{\cos(n\pi) - 1}{n^2 \pi^2}.$$

Pour la suite de l'exercice, on admet que : $\int_0^1 t \sin(n\pi t) dt = -\frac{\cos(n\pi)}{n\pi}.$

2. On considère la fonction f définie sur \mathbf{R} , périodique de période 2, telle que :

$$\begin{cases} f(t) = t \text{ sur } [0;1] \\ f(t) = 0 \text{ sur } [1;2] \end{cases}$$

- a) En utilisant le document réponse n°1, à rendre avec la copie, tracer la courbe C_f représentative de la fonction f sur l'intervalle [-4;4].
- b) On appelle S_f la série de Fourier associée à la fonction f.

On note
$$S_f(t) = a_0 + \sum_{n=1}^{+\infty} [a_n \cos(n\pi t) + b_n \sin(n\pi t)].$$

Calculer a_0 .

Donner les valeurs des coefficients a_n et b_n et en déduire que :

$$S_f(t) = \frac{1}{4} + \sum_{n=1}^{+\infty} \left[\frac{\cos(n\pi) - 1}{n^2 \pi^2} \cos(n\pi t) - \frac{\cos(n\pi)}{n\pi} \sin(n\pi t) \right].$$

- c) Calculer le carré de la valeur efficace de la fonction f, défini par $\mu_{eff}^2 = \frac{1}{2} \int_0^2 [f(t)]^2 dt$.
- d) Recopier et compléter, avec les valeurs exactes, le tableau suivant :

n	1	2	3
a_n			
b_n			

e) Donner une valeur approchée à 10^{-3} près du nombre réel A défini par :

$$A = \frac{{a_0}^2 + \frac{1}{2} \sum_{n=1}^{3} ({a_n}^2 + {b_n}^2)}{{\mu_{eff}}^2}.$$

3. Soit g la fonction définie sur \mathbf{R} , périodique de **période 2**, dont la courbe représentative C_g est tracée sur l'intervalle [-4;4] dans le document réponse n°1.

On admet que le développement en série de Fourier S_g associé à la fonction g, est défini par :

$$S_{\rho}(t) = S_{f}(-t)$$
.

Justifier que:

$$S_g(t) = \frac{1}{4} + \sum_{n=1}^{+\infty} \left[\frac{\cos(n\pi) - 1}{n^2 \pi^2} \cos(n\pi t) + \frac{\cos(n\pi)}{n\pi} \sin(n\pi t) \right]$$

4. Soit h et k les fonctions définies sur \mathbb{R} , périodiques de **période 2**, telles que :

$$h(t) = f(t) + g(t)$$
 et $k(t) = f(t) - g(t)$ pour tout nombre réel t .

- a) Sur le document réponse n° 1, à rendre avec la copie, tracer les courbes C_h et C_k représentatives des fonctions h et k sur l'intervalle [-4;4].
- b) On admet que les développements en série de Fourier S_h et S_k associés respectivement aux fonctions h et k, sont définis par :

$$S_h(t) = S_f(t) + S_g(t)$$
 et $S_k(t) = S_f(t) - S_g(t)$.

Déterminer les coefficients de Fourier associés respectivement aux fonctions h et k.

75, cours Alsace et Lorraine 33075 BORDEAUX CEDEX Tél.: 05 56 01 56 70

Exercice 2 (11 points)

Dans cet exercice, on étudie un système « entrée-sortie ». La partie A permet de déterminer la réponse à l'échelon unité. Les parties B et C permettent d'étudier les perturbations résultant d'une coupure de 0,1 seconde.

On rappelle que la fonction échelon unité U est définie par :

$$\begin{cases} U(t) = 0 & \text{si } t < 0 \\ U(t) = 1 & \text{si } t \ge 0 \end{cases}$$

Une fonction définie sur **R** est dite causale si elle est nulle sur l'intervalle $]-\infty;0[$.

Partie A:

On considère la fonction causale s_1 telle que, pour tout nombre réel t:

$$s_1(t) + \int_0^t s_1(u) du = U(t).$$

On note S_1 la transformée de Laplace de la fonction s_1 .

- 1. Montrer que $S_1(p) = \frac{1}{p+1}$.
- 2. En déduire $s_1(t)$ pour tout nombre réel t.

La courbe représentative de la fonction s_1 est donnée par la figure 1 du document réponse n°2.

Partie B:

On considère la fonction causale s_2 telle que, pour tout nombre réel t:

$$s_2(t) + \int_0^t s_2(u) du = U(t) - U(t-1).$$

On note S_2 la transformée de Laplace de la fonction s_2 .

1. Représenter graphiquement la fonction e_2 définie sur l'ensemble des nombres réels par :

$$e_2(t) = U(t) - U(t-1)$$
.

- 2. Déterminer $S_2(p)$.
- 3. a) En déduire $s_2(t)$ pour tout nombre réel t.
 - b) Justifier que:

$$\begin{cases} s_2(t) = 0 & \text{si } t < 0 \\ s_2(t) = e^{-t} & \text{si } 0 \le t < 1 \\ s_2(t) = -e^{-t}(e - 1) & \text{si } t \ge 1 \end{cases}$$

- **4.** Établir le sens de variation de la fonction s_2 sur l'intervalle $]1;+\infty[$.
- **5.** Calculer $s_2(1^+) s_2(1^-)$.
- **6.** On appelle C_2 la courbe représentative de la fonction s_2 .

a) Reproduire et compléter le tableau de valeurs ci-dessous :

t	1	1,1	1,5	2	2,5
$s_2(t)$					

Les résultats seront donnés à 10^{-2} près.

b) Compléter le tracé la courbe C_2 sur la figure 2 du document réponse n°2, à rendre avec la copie.

Partie C:

On considère la fonction causale s_3 telle que, pour tout nombre réel t:

$$s_3(t) + \int_0^t s_3(u) du = U(t) - U(t-1) + U(t-1,1).$$

1. Soit la fonction e_3 définie sur l'ensemble des nombres réels par :

$$e_3(t) = U(t) - U(t-1) + U(t-1,1)$$
.

- a) Montrer que $e_3(t) = e_2(t)$ pour tout nombre réel t appartenant à l'intervalle $]-\infty; 1,1[$.
- **b)** Déterminer $e_3(t)$ pour $t \ge 1,1$.
- c) Représenter graphiquement la fonction e_3 .

Pour la suite, on admet que :

$$\begin{cases} s_3(t) = s_2(t) & \text{si } t < 1, 1 \\ s_3(t) = e^{-t} \left(1 - e + e^{1, 1} \right) & \text{si } t \ge 1, 1 . \end{cases}$$

- 2. Établir le sens de variation de la fonction s_3 sur l'intervalle $]1,1;+\infty[$.
- 3. Calculer $s_3(1,1^+)-s_3(1,1^-)$.
- **4.** On appelle C_3 la courbe représentative de la fonction s_3 .
 - a) Reproduire et compléter le tableau de valeurs ci-dessous :

tt	 1,1	1,5	2	2,5
$s_3(t)$				

Les résultats seront donnés à 10^{-2} près.

b) Compléter le tracé de la courbe C_3 sur la figure 3 du document réponse n°2, à rendre avec la copie.

Document réponse n° 1, à rendre avec la copie (exercice 1)

Figure 1 : représentation de la fonction f

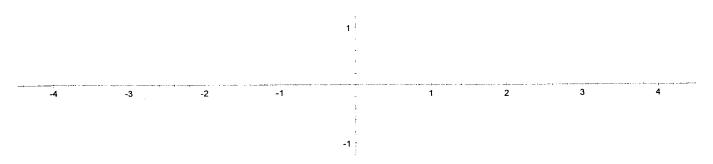


Figure 2 : représentation de la fonction g

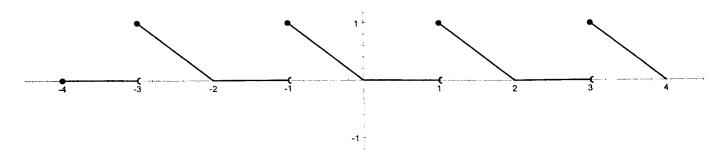


Figure 3 : représentation de la fonction h

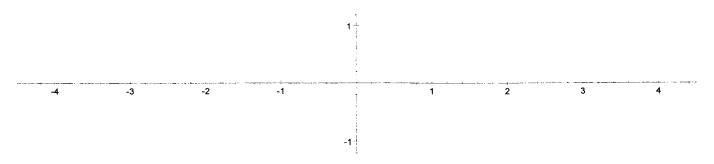
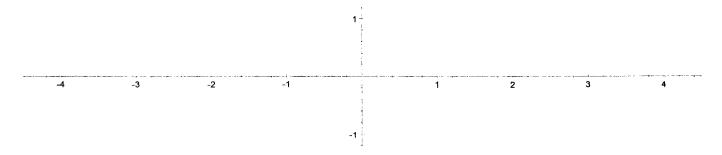


Figure 4 : représentation de la fonction k



Document réponse n°2, à rendre avec la copie (exercice 2)

Figure 1 : représentation de la fonction s_1

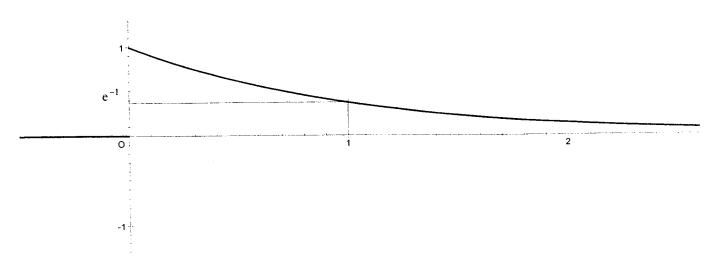


Figure 2 : représentation de la fonction s_2 à compléter

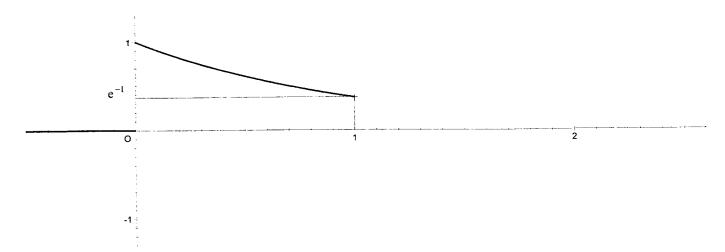
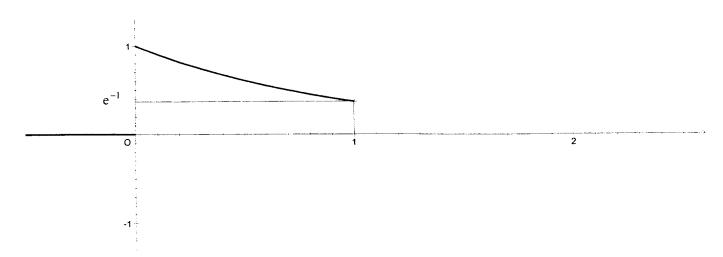


Figure 3 : représentation de la fonction s_3 à compléter



FORMULAIRE DE MATHEMATIQUES

GROUPEMENT A

CONTROLE INDUSTRIEL ET REGULATION AUTOMATIQUE

ELECTROTECHNIQUE

GENIE OPTIQUE

INFORMATIQUE ET RESEAUX POUR L'INDUSTRIE ET LES SERVICES TECHNIQUES

SYSTEMES ELECTRONIQUES

TECHNIQUES PHYSIQUES POUR L'INDUSTRIE ET LE LABORATOIRE

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$\ln(a b) = \ln a + \ln b$$
, où $a > 0$ et $b > 0$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}$$
, où $a > 0$

$$t^{\alpha} = e^{\alpha \ln t}$$
, où $t > 0$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$cos(2t) = 2cos^2 t - 1 = 1 - 2sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin (a+b) + \sin (a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$\sin t = \frac{1}{2i} (e^{\alpha} - e^{-\alpha})$$

$$e^{\alpha t} = e^{\alpha t} (\cos(\beta t) + i\sin(\beta t)), \text{ où } \alpha = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim \ln t = +\infty ;$$

$$\lim e^t = +\infty ;$$

$$\lim e^t = 0 ;$$

$$\sin \alpha > 0 \quad \lim_{\alpha \to 0} t^{\alpha} = +\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t\to 0} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$;

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln <i>t</i>	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e'	e ^t	Arc tan <i>t</i>	1 2
$t^{\alpha} \ (\alpha \in \mathbb{R})$	$\alpha t^{\alpha-1}$		$1+t^2$
sin t	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	-sin <i>t</i>		
tan <i>t</i>	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

 $(v \circ u)' = (v' \circ u)u'$ $(e^u)' = e^u u'$ $(\ln u)' = \frac{u'}{u}, \quad u \text{ à valeurs strictement positives}$ $(u^{\alpha})' = \alpha u^{\alpha - 1} u'$

$$(u^{\alpha})' = \alpha u^{\alpha-1} u$$

C.R.D.P. 75, cours Alsace et Lorraine 33075 BORDEAUX CEDEX Tél.: 05 56 01 56 70

c) Calcul intégral

Valeur moyenne de f sur [a, b]:
$$\frac{1}{b-a} \int_{a}^{b} f(t) dt$$

Intégration par parties :
$$\int_{a}^{b} u(t) \ v'(t) \ dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t) \ v(t) \ dt$$

d) Développements limités

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon(t)$$

$$\sin t = \frac{t}{1!} - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \dots + (-1)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$\cos t = 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{p} \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon(t)$$

$$\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3} + \dots + (-1)^{n-1} \frac{t^{n}}{n} + t^{n} \varepsilon(t)$$

$$(1+t)^{\alpha} = 1 + \frac{\alpha}{1!} t + \frac{\alpha(\alpha-1)}{2!} t^{2} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} t^{n} + t^{n} \varepsilon(t)$$

$$\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$$

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon (t)$$

$$(1+t)^{\alpha} = 1 + \frac{\alpha}{1!}t + \frac{\alpha(\alpha-1)}{2!}t^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}t^n + t^n \varepsilon(t)$$

e) Equations différentielles

Équations	Solutions sur un intervalle I							
a(t)x'+b(t)x=0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$							
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique							
équation caractéristique :	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique							
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines							
de discriminant Δ	complexes conjuguées de l'équation caractéristique.							

3. SERIES DE FOURIER

f: fonction périodique de période T;

développement en série de Fourier :

$$s(t) = a_0 + \sum_{n=1}^{+\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t)) = \sum_{-\infty}^{+\infty} c_k e^{ik\omega t}, \quad (n \in \mathbb{N}^*, k \in \mathbb{Z}).$$

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t) dt ;$$

$$a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos(n\omega t) dt$$

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t) dt ; \qquad a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos(n\omega t) dt ; \qquad b_n = \frac{2}{T} \int_a^{a+T} f(t) \sin(n\omega t) dt .$$

$$c_k = \frac{1}{T} \int_a^{a+T} f(t) e^{-ik\omega t} dt \ (k \in \mathbb{Z}); \qquad c_0 = a_0; \qquad \frac{a_n - ib_n}{2} = c_n; \qquad \frac{a_n + ib_n}{2} = c_{-n} \ (n \in \mathbb{N}^*).$$

$$c_0 = a_0$$

$$\frac{a_n - \mathrm{i}b_n}{2} = c_n \ ;$$

$$\frac{a_n + \mathrm{i}b_n}{2} = c_{-n} \quad (n \in \mathbb{N}^*).$$

4. TRANSFORMATION DE LAPLACE

Fonctions usuelles

$$\mathcal{L}(\mathcal{U}(t)) = \frac{1}{p}$$

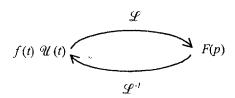
$$\mathcal{L}(t\mathcal{U}(t)) = \frac{1}{n^2} \quad ;$$

$$\mathcal{L}(\mathcal{U}(t)) = \frac{1}{p} \quad ; \qquad \qquad \mathcal{L}(t\mathcal{U}(t)) = \frac{1}{p^2} \quad ; \qquad \qquad \mathcal{L}(t^n\mathcal{U}(t)) = \frac{n!}{p^{n+1}} \quad (n \in \mathbb{N}) \quad ;$$

$$\mathscr{L}\left(e^{-at}\mathscr{U}(t)\right) = \frac{1}{p+a} \; ; \; \mathscr{L}\left(\sin(\omega t)\mathscr{U}(t)\right) = \frac{\omega}{p^2 + \omega^2} \quad ; \qquad \mathscr{L}\left(\cos(\omega t)\mathscr{U}(t)\right) = \frac{p}{p^2 + \omega^2} \; .$$

$$\mathscr{L}(\cos(\omega t)\mathscr{U}(t)) = \frac{p}{p^2 + \omega^2}$$

Propriétés



$f(\alpha t) \mathcal{U}(t) \qquad \alpha > 0$	$\frac{1}{\alpha}F\left(\frac{p}{\alpha}\right)$
$f(t-\tau)\mathscr{U}(t-\tau)$	$F(p) e^{-\tau p}$
$f(t) e^{-at} \mathcal{U}(t)$	F(p+a)
$f'(t)\mathcal{U}(t)$	$pF(p)-f(0^+)$
$f''(t)\mathcal{U}(t)$	$p^2F(p)-pf(0^+)-f'(0^+)$
$-t f(t) \mathcal{U}(t)$	F'(p)
$\int_0^t f(u) \mathcal{U}(u) \mathrm{d}u$	$\frac{F(p)}{p}$

5. TRANSFORMATION EN Z

Signal causal $n \mapsto x(n)$ pour $n \in \mathbb{N}$	Transformée eu Z $z\mapsto ig(Zxig)(z)$
e(n) = 1	$(Ze)(z) = \frac{z}{z-1}$
$\begin{cases} d(0) = 1 \\ d(n) = 0 \text{ si } n \neq 0 \end{cases}$	(Zd)(z)=1
r(n) = n	$(Zr)(z) = \frac{z}{(z-1)^2}$
$c(n) = n^2$	$(Zc)(z) = \frac{z(z+1)}{(z-1)^3}$
$f(n) = a^n, \ a \in \mathbb{R} - \{0\}$	$(Zf)(z) = \frac{z}{z-a}$
$y(n) = a^n x(n), \ a \in \mathbb{R} - \{0\}$	$(Zy)(z) = (Zx)\left(\frac{z}{a}\right)$
$y(n) = x(n - n_0), (n - n_0) \in \mathbb{N}$ ou $y(n) = x(n - n_0)e(n - n_0)$	$(Zy)(z) = z^{-n_0} (Zx)(z)$
y(n) = x(n+1)	(Zy)(z) = z[(Zx)(z) - x(0)]
y(n) = x(n+2)	$(Zy)(z) = z^{2}[(Zx)(z) - x(0) - x(1)z^{-1}]$
$y(n) = x(n+n_0), \ n_0 \in \mathbb{N}^*$	$(Zy)(z) = z^{n_0} \left[(Zx)(z) - x(0) - x(1)z^{-1} - x(2)z^{-2} \cdots - x(n_0 - 1)z^{-(n_0 - 1)} \right]$

6. PROBABILITES

a) Loi binomiale
$$P(X = k) = C_n^k$$

$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

$$\sigma(X) = \sqrt{npq}$$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

$\frac{\lambda}{k}$	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

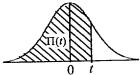
		1.5	2	3	4	5	6	7	8	9	10
$\frac{\lambda}{k}$	1			0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
0	0.368	0.223	0.135 0.271	0.030	0.073	0.034	0.015	0.006	0.003	0.001	0.000
1	0.368	0.335	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
2	0.184	0.251	0.271	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
3	0.061	0.126	0.180	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
4	0.015	0.047	0.036	0.100	0.156	0.176	0.161	0.128	0.092	0.061	0.038
5	0.003	0.014	0.030	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
6	0.001	0.004	0.012	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
7	0.000	0.001	0.003	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
8		0.000	0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
9			0.000	0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
10				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
11				0.000	0.001	0.003	0.011	0.026	0.048	0.073	0.095
12	}				0.000	0.001	0.005	0.014	0.030	0.050	0.073
13						0.000	0.002	0.007	0.017	0.032	0.052
14							0.001	0.003	0.009	0.019	0.035
15							0.000	0.001	0.005	0.011	0.022
16							ļ	0.001	0.002	0.006	0.013
17								0,000	0.001	0.003	0.007
18									0.000	0.001	0.004
19										0.001	0.002
20										0,000	0.001
21											0.000
22	- Constitution of the second		-				-				

c) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$



						U	ι			
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,5910	0,594 8	0,598 7	0,602 6	0,606 4	0,6103	0,614 1
0,3	0,6179	0,6217	0,625 5	0,6293	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,6664	0,670 0	0,673 6	0,677 2	0,6808	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,7019	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	6,828 9	0,831 5	0,834 0	0,836 5	0,838 9
0,5	0,010	-,	,							
1,0	0,841 3	0,843 8	0,846 1	0,8485	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,9115	0,913 1	0,9147	0,916 2	0,917 7
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,9671	0.9678	0,968 6	0,969 3	0,969 9	0,970 6
•	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,9744	0,975 0	0,975 6	0,976 1	0,9767
1,9	0,9713	0,5/1	0,7720	0,5 10 2						
1,,	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7
2,0	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,1	0,982 1	0,986 4	0,986 8	0,987 1	0,987 5	0,987 8	0,988 1	0,988 4	0,988 7	0,989 0
2,2	1	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,3	0,989 3	0,989 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,4	0,991 8	0,992 0	0,994 1	0,9943	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,5	0,993 8	1	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4
2,6	0,995 3	0,995 5	0,996 7	0,996 8	0,996 9	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4
2,7	0,996 5	0,996 6	ì	1	0,997 7	0,997 8	0,997 9	0,997 9	0,998 0	0,998 1
2,8	0,997 4	0,997 5	0,997 6	0,997 7	1	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	J U,770 4	0,770 3	1 5,770 3	1	1

TABLE POUR LES GRANDES VALEURS DE t

	I ABLE I OUR EES GRUDES THESE IS											
r		* ^	1 1	2.2	1 2	3.4	3.5	3.6	3,8	4,0	4,5	
- 1	t	3,0	3,1	3,2	3,3	J,7	3,5	1 222 244	0.000.020	0.999 968	0,999 997	
t	=(.)	0.000 (5	0 999 04	A 000 31	n 999 52	0.999 66	0.999 76	0,999 841	0,999 928	0,999 500	0,777 777	
	$\Pi(t)$	0,998 65	0,777 04	0,227 31	0,777 32							

Nota: $\Pi(-t) = 1 - \Pi(t)$