PRODUIT SCALAIRE

Produit scalaire

Définition

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan. On considère trois points O, A et B tels que :

$$\overrightarrow{\mathsf{OA}} = \overrightarrow{u}$$
 et $\overrightarrow{\mathsf{OB}} = \overrightarrow{v}$.

On appelle produit scalaire du vecteur \overrightarrow{u} par le vecteur \overrightarrow{v} le nombre réel noté $\overrightarrow{u}.\overrightarrow{v}$ tel que :

- si $\overrightarrow{u} = \overrightarrow{0}$ ou $\overrightarrow{v} = \overrightarrow{0}$
- si $\overrightarrow{u} \neq \overrightarrow{0}$ et $\overrightarrow{v} \neq \overrightarrow{0}$

Soit H le projeté orthogonal de B sur (OA)

Si \overrightarrow{OA} et \overrightarrow{OH} sont de même sens : $\overrightarrow{u} \cdot \overrightarrow{v} = OA \times OH$

Si \overrightarrow{OA} et \overrightarrow{OH} sont de sens contraire : $\overrightarrow{u} \cdot \overrightarrow{v} = - \overrightarrow{OA} \times \overrightarrow{OH}$

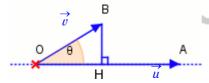
В В

(voir animation)

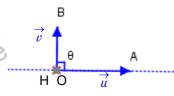
(voir animation)

Remarques

Soit θ l'angle \overrightarrow{AOB} , c'est-à-dire l'angle que forment les vecteurs \overrightarrow{u} et \overrightarrow{v} lorsqu'ils sont non nuls





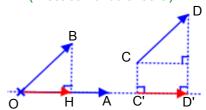


Si θ est un angle aigu, le produit scalaire \overrightarrow{u} . \overrightarrow{v} est positif

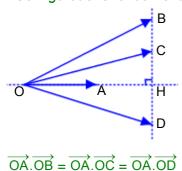
Si θ est un angle obtus, le produit scalaire $\overrightarrow{u}.\overrightarrow{v}$ est négatif

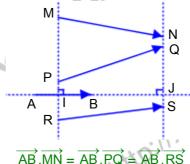
Si θ est un angle droit, le produit scalaire $\overrightarrow{u}.\overrightarrow{v}$ est nul (H est confondu avec O)

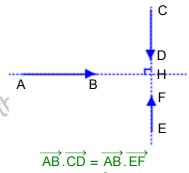
Si C et D sont deux points tels que $\overrightarrow{CD} = \overrightarrow{OB}$, et si C' et D' sont les projetés orthogonaux de C et D sur (OA), alors $\overrightarrow{C'D'} = \overrightarrow{OH}$ On dit que $\overrightarrow{C'D'}$ est le projeté orthogonal de \overrightarrow{CD} sur (OA)



Configurations fondamentales







= 0

Exercice 01 (voir réponses et correction)

 $=\overrightarrow{OA}.\overrightarrow{OH}=OA \times OH$

Déterminer en fonction de a les produits scalaires : Soit ABCD un carré de centre O tel que AB = a.

AB.AC AB.AD ; $\overrightarrow{OC}.\overrightarrow{OD}$; $\overrightarrow{AC}.\overrightarrow{AO}$ OC.OA AD.OB

Exercice 02 (voir réponses et correction)

On considère un triangle OAB avec OA = 5 ; OB = 3 et $(\overrightarrow{OA}; \overrightarrow{OB}) = \theta [2\pi]$

Faire une figure et calculer le produit scalaire $\overrightarrow{OA}.\overrightarrow{OB}$ pour $\theta = \frac{\pi}{3}$; $\theta = \frac{\pi}{4}$ et $\theta = \frac{5\pi}{6}$

Propriété (voir démonstration 01)

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls on a : $\overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \cos(\overrightarrow{u};\overrightarrow{v})$

Remarques

- L'expression $\overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \cos(\overrightarrow{u}; \overrightarrow{v})$ n'est pas vraiment fausse lorsque \overrightarrow{u} ou \overrightarrow{v} est nul, car l'une des deux normes est nulle (mais l'angle (\overrightarrow{u} ; \overrightarrow{v}) n'existe pas).
- Le produit scalaire peut aussi s'exprimer avec un angle géométrique non orienté, puisqu'il ne fait intervenir que le cosinus de l'angle.

Propriété (voir démonstration 02)

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} on a : $\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{v}.\overrightarrow{u}$

Exercice 03 (voir réponses et correction)

Soit OAB un triangle.

On considère le point A', projeté orthogonal de A sur (OB) et B' projeté orthogonal de B sur (OA). Montrer que $OA' \times OB = OA \times OB'$

Remarque

Si on exprime un produit scalaire $\overrightarrow{u}.\overrightarrow{v}$ en utilisant une projection orthogonale, on peut aussi bien projeter \overrightarrow{u} \overrightarrow{v} que \overrightarrow{v} sur \overrightarrow{u} .

(voir réponses et correction) Exercice 04

Calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ dans chacun des cas suivants :

1°) AB = 3 , AC = 5 et
$$\widehat{BAC} = \frac{\pi}{6}$$

2°) AB = 1, AC = 2 et
$$(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{2\pi}{3}$$

3°)BA = 2 , CA = 2 et
$$\widehat{CAB} = \frac{3\pi}{4}$$

4°) BA = 3 , CA =
$$\sqrt{2}$$
 et $(\overrightarrow{AB}, \overrightarrow{CA}) = \frac{\pi}{4}$

Exercice 05 (voir réponses et correction)

On considère un triangle équilatéral direct ABC tel que AB = a. Soit G son centre de gravité. Soient A', B', C' les milieux respectifs des segments [BC], [AC], [AB].

Calculer les produits scalaires : $\overrightarrow{AB}.\overrightarrow{AC}$; $\overrightarrow{BG}.\overrightarrow{BC}$; $\overrightarrow{GB}.\overrightarrow{GA}$; $\overrightarrow{AC}.\overrightarrow{BA'}$; $\overrightarrow{GA'}.\overrightarrow{GB'}$

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si leur produit scalaire est nul. c'est-à-dire : $\overrightarrow{u} \perp \overrightarrow{v}$ \Leftrightarrow $\overrightarrow{u}.\overrightarrow{v} = 0$ http://xmath

Propriété (voir démonstration 04)

Pour tout vecteur \overrightarrow{u} , on a : $\overrightarrow{u}.\overrightarrow{u} = ||\overrightarrow{u}||^2$

Notation: le produit scalaire de \overrightarrow{u} par \overrightarrow{u} est noté \overrightarrow{u}^2 . On a donc $\overrightarrow{u}^2 = \|\overrightarrow{u}\|^2$

Propriété (voir démonstration 05)

 $(k \overrightarrow{u}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (k \overrightarrow{v}) = k (\overrightarrow{u} \cdot \overrightarrow{v})$ Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} et pour tout réel k on a :

http://xmaths.free.fr 1èreS - Produit scalaire page 2

Propriété (voir démonstration 06)

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} et $\overrightarrow{v'}$ on a : \overrightarrow{u} . (\overrightarrow{v} + $\overrightarrow{v'}$) = \overrightarrow{u} . \overrightarrow{v} + \overrightarrow{u} . $\overrightarrow{v'}$

Propriété (voir démonstration 07)

Pour tous vecteurs \overrightarrow{u} , $\overrightarrow{u'}$, \overrightarrow{v} , $\overrightarrow{v'}$ et pour tous réels α , α' , β , β' , on a : $(\alpha \overrightarrow{u} + \beta \overrightarrow{v})(\alpha' \overrightarrow{u'} + \beta' \overrightarrow{v'}) = \alpha \alpha' \overrightarrow{u} . \overrightarrow{u'} + \alpha \beta' \overrightarrow{u} . \overrightarrow{v'} + \beta \alpha' \overrightarrow{v} . \overrightarrow{u'} + \beta \beta' \overrightarrow{v} . \overrightarrow{v'}$

Remarque

En utilisant la propriété précédente, on peut justifier que :

 $(\overrightarrow{u} + \overrightarrow{v})^2 = \overrightarrow{u}^2 + \overrightarrow{v}^2 + 2 \overrightarrow{u} \cdot \overrightarrow{v}$; $(\overrightarrow{u} - \overrightarrow{v})^2 = \overrightarrow{u}^2 + \overrightarrow{v}^2 - 2 \overrightarrow{u} \cdot \overrightarrow{v}$; $(\overrightarrow{u} + \overrightarrow{v})(\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u}^2 - \overrightarrow{v}^2$ On peut en déduire une expression du produit scalaire en fonction des normes :

$$\overrightarrow{u}.\overrightarrow{v} = \frac{1}{2} \left[(\overrightarrow{u} + \overrightarrow{v})^2 - \overrightarrow{u}^2 - \overrightarrow{v}^2 \right] = \frac{1}{2} \left[\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \right]$$

Propriété (voir démonstration 08)

Si $(0; \vec{i}, \vec{j})$ est un repère orthonormal du plan, on a :

$$\overrightarrow{i}.\overrightarrow{i} = \|\overrightarrow{i}\|^2 = 1$$
; $\overrightarrow{j}.\overrightarrow{j} = \|\overrightarrow{j}\|^2 = 1$; $\overrightarrow{i}.\overrightarrow{j} = 0$ et $\overrightarrow{j}.\overrightarrow{i} = 0$

Propriété (voir démonstration 09)

Le plan est rapporté à un repère **orthonormal** $(0; \vec{i}, \vec{j})$. Soient $\vec{u}(x; y)$ et $\vec{v}(x'; y')$.

On a:
$$\overrightarrow{u}.\overrightarrow{v} = xx' + yy'$$
 et $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$

Propriété (voir démonstration 10)

Le plan est rapporté à un repère <u>orthonormal</u> $(0; \vec{i}, \vec{j})$. Soient $\vec{u}(x; y)$ et $\vec{v}(x'; y')$. \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si : xx' + yy' = 0.

Remarque

Ne pas confondre avec la condition de colinéarité : xy' - yx' = 0.

(voir réponses et correction) Exercice 06

Le plan est rapporté à un repère orthonormal $(0; \overrightarrow{i}, \overrightarrow{j})$. Soient \overrightarrow{u} (2; 1) \overrightarrow{v} (3; -6) \overrightarrow{w} (1; 3)

1°) Calculer $\overrightarrow{u}.\overrightarrow{v}$ que peut-on en déduire pour les vecteurs \overrightarrow{u} et \overrightarrow{v} ?

2°) Calculer $\overrightarrow{u}.\overrightarrow{w}$; $||\overrightarrow{u}||$; $||\overrightarrow{w}||$. Que peut-on en déduire pour l'angle $(\overrightarrow{u};\overrightarrow{w})$?

Exercice 07 (voir réponses et correction)

Le plan est rapporté à un repère orthonormal $(0; \vec{i}, \vec{j})$

On considère les points A(1; -1) B(3; 3) C(-4; 4) D(2; 1)

Montrer que les droites (AB) et (CD) sont perpendiculaires.

Exercice 08 (voir réponses et correction)

ns.free.frl On considère les points A(1; 2) et B(3; -5). Le plan est rapporté à un repère orthonormal $(0; \vec{i}, \vec{j})$.

- 1°) Déterminer (par deux méthodes différentes) une équation de la médiatrice de [AB].
- 2°) Déterminer une équation de la droite passant par C(0; 3) et perpendiculaire à (AB).

Exercice 09 (voir réponses et correction)

Le plan est rapporté à un repère orthonormal $(0; \overrightarrow{i}, \overrightarrow{j})$.

On considère les points A(-3; -1), B(2; 1) et C(1; 4).

- 1°) Calculer \overrightarrow{AB} . \overrightarrow{AC} . En déduire une valeur approchée de la mesure en degrés de l'angle \overrightarrow{BAC} .
- 2°) Déterminer de même des valeurs approchées des mesures en degrés des angles ACB et CBA. Vérifier en calculant la somme des mesures des trois angles.

Exercice 10 (voir réponses et correction)

A, B, C et D sont quatre points quelconques du plan.

Démontrer que $\overrightarrow{AB}.\overrightarrow{CD} + \overrightarrow{AC}.\overrightarrow{DB} + \overrightarrow{AD}.\overrightarrow{BC} = 0$

Exercice 11 (voir réponses et correction)

Le plan est rapporté à un repère orthonormal. k est un réel.

Soit $\overrightarrow{u}(k; -5)$ et $\overrightarrow{v}(2k - 1; k + 4)$. Existe-t-il des valeurs du réel k pour lesquelles $\overrightarrow{u} \perp \overrightarrow{v}$?

Applications

Exercice 12 (voir réponses et correction)

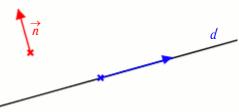
Le plan est rapporté à un repère orthonormal $(0; \vec{i}, \vec{j})$.

On considère le vecteur \overrightarrow{u} de coordonnées (2 ; -3) et le point A de coordonnées (1 ; 2)

- 1°) Faire un dessin. Représenter l'ensemble D des points M du plan tels que $\overrightarrow{\mathsf{AM}} \perp \overrightarrow{u}$
- 2°) Démontrer que D est une droite dont on donnera une équation.(On dit que \overrightarrow{u} est un vecteur normal à D)

Définition

On appelle vecteur normal à une droite d, tout vecteur \vec{n} non nul orthogonal à un vecteur directeur de d.



Remarque

Si \overrightarrow{n} est un vecteur normal à d, alors l'ensemble des vecteurs normaux à d est l'ensemble des vecteurs non rropriété (voir démonstration 11)
Le plan est rapporté à un repère orthonormal (O; i, j).
Une droite d ayant pour vecteur normal le vecte.
Une droite d ayant une équi.

- Une droite d ayant pour vecteur normal le vecteur \overrightarrow{n} (a; b) a une équation de la forme ax + by + c = 0.
- Une droite d ayant une équation de la forme ax + by + c = 0 a pour vecteur normal le vecteur \overrightarrow{n} (a; b).

Exercice 13 (voir réponses et correction)

Dans le plan rapporté à un repère orthonormal $(0; \vec{l}, \vec{j})$, on considère A(1; 3); B(2; 0) et C(-3; 1).

- 1°) Déterminer une équation de la hauteur issue de A du triangle ABC.
- 2°) Déterminer une équation de la hauteur issue de B du triangle ABC. En déduire les coordonnées de l'orthocentre H du triangle ABC.
- 3°) Vérifier le résultat en utilisant le logiciel GeoGebra.

Remarque

- le cercle de diamètre $\lceil AR \rceil$ est l'accombi • Dans le plan rapporté à un repère orthonormal $(0; \vec{i}, \vec{j})$,
- Le cercle de diamètre [AB] est l'ensemble des points M tels que $\overrightarrow{AM}.\overrightarrow{BM} = 0$. En exprimant le produit scalaire \overrightarrow{AM} . \overrightarrow{BM} en fonction des coordonnées, on retrouve l'équation du cercle.

(voir réponses et correction) Exercice 14

Dans le plan rapporté à un repère orthonormal $(0; \overrightarrow{i}, \overrightarrow{j})$, on considère les points A(1; 2) et B(4; -2).

- 1°) Soit M(x; y). Montrer que $\overrightarrow{AM}.\overrightarrow{BM} = 0 \Leftrightarrow x^2 5x + y^2 = 0$
- 2°) En écrivant la forme canonique de x^2 5x, déduire de la question précédente que le cercle C de diamètre [AB] a pour équation : $\left(x - \frac{5}{2}\right)^2 + y^2 = \frac{25}{4}$
- 3°) Retrouver ce résultat en déterminant AB et les coordonnées du milieu de [AB].

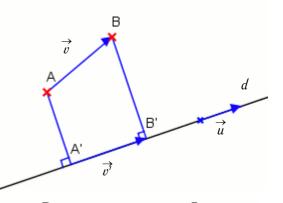
Propriété (voir démonstration 12)

Soit d une droite et \overrightarrow{u} un vecteur directeur $\underline{\text{unitaire}}$ de d. Soient A et B deux points du plan.

Soient A', B' les projetés orthogonaux de A et B sur d.

On a
$$\overrightarrow{A'B'} = (\overrightarrow{AB}.\overrightarrow{u})\overrightarrow{u}$$

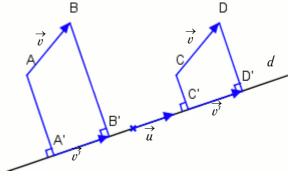
En posant $\overrightarrow{v} = \overrightarrow{AB}$ et $\overrightarrow{v'} = \overrightarrow{A'B'}$, on obtient $\overrightarrow{v'} = (\overrightarrow{v}.\overrightarrow{u})\overrightarrow{u}$ On dit que $\overrightarrow{v'}$ est le projeté orthogonal de \overrightarrow{v} sur la droite d.



Remarque

Le projeté orthogonal du vecteur $\overrightarrow{v} = \overrightarrow{AB}$ sur une droite d ne dépend donc pas des points A et B.

c'est-à-dire que si
$$\overrightarrow{v} = \overrightarrow{AB} = \overrightarrow{CD}$$
 alors $\overrightarrow{v'} = \overrightarrow{A'B'} = \overrightarrow{C'D'}$



Exercice 15 (voir réponses et correction)

On considère dans le plan deux points A et B distincts et I le milieu du segment [AB].

- 1°) Soit M un point quelconque du plan. En écrivant $\overrightarrow{MA} = \overrightarrow{MI} + \overrightarrow{IA}$ et $\overrightarrow{MB} = \overrightarrow{MI} + \overrightarrow{IB}$, démontrer que $MA^2 + MB^2 = 2 \ MI^2 + \frac{1}{2} \ AB^2$ (égalité est connue sous le nom de "théorème de la médiane")
- 2°) On suppose que A et B sont tels que AB = 4.
 - a) Déterminer l'ensemble des points M tels que : $MA^2 + MB^2 = 26$
 - b) Donner, suivant les valeurs du réel k, l'ensemble des points M tels que : $MA^2 + MB^2 = k$.

Exercice 16 (voir <u>réponses et correction</u>)

1°) On considère un triangle ABC.

En écrivant $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$, démontrer la relation :

$$AB^2 = AC^2 + BC^2 - 2 AC \times BC \times \cos ACB$$

Cette relation appelée "formule d'Al-Kashi" peut aussi être écrite sous la forme :

 $c^2 = a^2 + b^2 - 2ab \cos \gamma$ en notant a, b, c les côtés du triangle et α , β , γ les angles opposés respectifs.

Elle reste valable lorsque l'on échange les côtés c'est-à-dire que l'on peut aussi écrire :

$$b^2 = a^2 + c^2 - 2ac \cos \beta$$
 et $a^2 = b^2 + c^2 - 2bc \cos \alpha$

- 2°) Que donne la formule d'Al-Kashi dans le cas d'un angle droit ? La formule d'Al-Kashi est parfois appelée théorème de Pythagore généralisé.
- 3°) ABC est un triangle tel que AB = 3 AC = 8 et BAC = 22° Donner une valeur approchée de BC. En déduire des valeurs approchées des autres angles du triangle. Retrouver ces valeurs en utilisant le logiciel GeoGebra.

Exercice 17 (voir réponses et correction)

Soit ABC un triangle. On note : BC = a ; AC = b ; AB = c ; $\widehat{ABC} = \alpha$; $\widehat{ABC} = \beta$; $\widehat{ACB} = \gamma$ 1°) Soit H le pied de la hauteur issue de B dans le triangle ABC. Justifier que BH = AB x sin α .

En déduire que l'aire du triangle ABC est donnée par: $\mathcal{A} = \frac{1}{2}bc \sin \alpha$.

Justifier que l'on a aussi $\mathscr{A} = \frac{1}{2}ac \sin \beta = \frac{1}{2}ab \sin \gamma$

En déduire que $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$ (égalité connue sous le nom de "relation des sinus")

2°) ABC est un triangle tel que AB = 3 $\widehat{BAC} = 22^{\circ}$ $\widehat{ABC} = 43^{\circ}$ Donner une valeur approchée de AC et de BC.

Exercice 18 (voir réponses et correction)

Application à la trigonométrie : Démonstration des formules d'addition

Le plan est rapporté à un repère orthonormal direct $(0; \overrightarrow{i}, \overrightarrow{j})$. a et b sont deux nombres réels.

On considère A et B de coordonnées polaires respectives (1; a) et (1; b) dans le repère polaire $(0; \vec{\iota})$.

1°) Déterminer en fonction de a et b une mesure de l'angle $(\overrightarrow{OB}, \overrightarrow{OA})$.

En déduire en fonction de a et b, le produit scalaire $\overrightarrow{OB}.\overrightarrow{OA}$.

2°) Donner dans le repère $(0; \vec{l}, \vec{j})$ les coordonnées (cartésiennes) de A et B.

En déduire une autre expression du produit scalaire OB.OA

- 3°) En comparant les deux expressions du produit scalaire obtenues, démontrer que $\cos (a - b) = \cos a \cos b + \sin a \sin b$
- 4°) En utilisant la relation $\cos (a b) = \cos a \cos b + \sin a \sin b$, démontrer la relation $\cos (a + b) = \cos a \cos b - \sin a \sin b$
- 5°) En utilisant les relations précédentes avec $\frac{\pi}{2}$ a et b, démontrer les relations $\sin (a + b) = \sin a \cos b + \cos a \sin b$ et $\sin (a - b) = \sin a \cos b - \cos a \sin b$

Exercice 19 (voir réponses et correction)

Le plan est rapporté à un repère orthonormal $(0; \vec{i}, \vec{j})$.

On considère le point A de coordonnées (3 ; -2) et le vecteur \overrightarrow{u} de coordonnées (-1 ; 3).

Soit \triangle l'ensemble des points M(x; y) tels que $\overrightarrow{AM} \cdot \overrightarrow{u} = 21$.

Donner une équation de Δ , donner la nature de Δ et représenter cet ensemble.

Que peut-on dire de Δ et de la droite d passant par A et de vecteur directeur \vec{u} ? (Justifier)

Déterminer l'intersection de d et de Δ .

Exercice 20 (voir réponses et correction)

On considère dans le plan deux points A et B tels que AB = 3.

Soit \triangle l'ensemble des points M du plan tels que \overrightarrow{AM} . $\overrightarrow{AB} = 0$. Caractériser géométriquement et représenter \triangle .

Soit Δ' l'ensemble des points M du plan tels que \overrightarrow{AM} . $\overrightarrow{AB} = -18$.

Déterminer un point H de la droite (AB) appartenant à Δ'.

En exprimant \overrightarrow{AM} en fonction de \overrightarrow{AH} et \overrightarrow{HM} , caractériser géométriquement et représenter Δ' .

Exercice 21 (voir réponses et correction)

On considère dans le plan rapporté à un repère orthonormal $(0; \vec{i}, \vec{j})$ les points A(1; 3) et B(4; -1).

1°) Soit \triangle l'ensemble des points M du plan tels que MA² + MB² = 17.

Donner l'équation de Δ . Caractériser géométriquement et représenter Δ .

- 2°) Soit Δ' l'ensemble des points M du plan tels que MA² MB² = 0. Donner l'équation de Δ' . Caractériser géométriquement et représenter Δ' .
- 3°) Soit Δ'' l'ensemble des points M du plan tels que $MA^2 MB^2 = -6$. Donner l'équation de Δ'' . Caractériser géométriquement et représenter Δ'' .

Distance d'un point à une droite. Le plan est rapporté à un repère orthonormal $(0; \vec{t}, \vec{j})$. On considère la droite d d'équation ax + by + c = 0 avec $(a \cdot b) \cdot (b \cdot c)$. Soit A le point de coordon.

Soit A le point de coordonnées $(x_0; y_0)$ et soit $H(x_1; y_1)$ le projeté orthogonal de A sur d.

- 1°) Donner les coordonnées d'un vecteur $\stackrel{\rightarrow}{n}$ normal à la droite d.
- 2°) En déduire que $\begin{cases} x_1 = x_0 + \lambda a \\ y_1 = y_0 + \lambda b \end{cases} \text{ avec } \lambda \in \mathbb{R} \, .$
- 3°) Déterminer la valeur de λ en fonction de a, b, c, x_0 et y_0 .
- 4°) En déduire la valeur de la distance AH en fonction de a, b, c, x_0 et y_0 .
- 5°) Justifier que la distance AH est la plus petite distance du point A à un point de d. On dit que AH est la distance de A à la droite d.
- 6°) Application : Soit d la droite d'équation 2x + 3y + 5 = 0 et soit A(4 ; 1). Déterminer la distance de A à la droite d. Faire un dessin.