Produit scalaire : Résumé de cours et méthodes

Le plan est muni d'un repère orthonormal.

1 Introduction

DÉFINITION

le produit scalaire de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le réel noté $\overrightarrow{u} \cdot \overrightarrow{v}$ défini par : $\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left(\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \right).$

1-1 Produit scalaire et orthogonalité

PROPRIÉTÉ

Dire que deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux équivaut à dire que $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

1-2 Règles de calcul

PROPRIÉTÉS

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} :

- $\bullet \overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$
- $\bullet \overrightarrow{0} \cdot \overrightarrow{u} = \overrightarrow{u} \cdot \overrightarrow{0} = 0$
- Pour tout réel k, $(k\overrightarrow{u}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (k\overrightarrow{v}) = k \times (\overrightarrow{u} \cdot \overrightarrow{v})$
- $\bullet \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$
- $\overrightarrow{u} \cdot \overrightarrow{u}$ est noté \overrightarrow{u}^2 et est appelé carré scalaire de \overrightarrow{u}
- $\overrightarrow{u}^2 = ||\overrightarrow{u}||^2$ (carré de la longueur du vecteur \overrightarrow{u})
- $(\overrightarrow{u} + \overrightarrow{v})^2 = \overrightarrow{u}^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2$ (cela signifie que $(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v}) = \overrightarrow{u} \cdot \overrightarrow{u} + 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{v}$)
- $\bullet (\overrightarrow{u} \overrightarrow{v})^2 = \overrightarrow{u}^2 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2$
- $\bullet (\overrightarrow{u} \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v}) = \overrightarrow{u}^2 \overrightarrow{v}^2$

2 Produit scalaire et géométrie analytique

PROPRIÉTÉ

Si
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$ et $\overrightarrow{u}^2 = x^2 + y^2$

► Exemple: soit $\overrightarrow{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$. $\overrightarrow{u} \cdot \overrightarrow{v} = 3 \times 2 + (-1) \times 6 = 6 - 6 = 0$. Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.

2-1 Applications aux équations de droite

PROPRIÉTÉS

- Rappel : toute droite admet une équation (dite cartésienne) de la forme ax + by + c = 0 (avec $(a,b) \neq (0,0)$) et $\overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de la droite.
- On appelle vecteur normal d'une droite tout vecteur \overrightarrow{n} non nul et orthogonal à un vecteur directeur de la droite.
- Si une droite admet une équation de la forme ax + by + c = 0 alors $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal de cette droite et, réciproque-

ment, si une droite admet le vecteur \overrightarrow{n} $\begin{pmatrix} a \\ b \end{pmatrix}$ comme vecteur normal alors elle admet une équation de la forme ax + by + c = 0.

► Exemple : Soit
$$A \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
, $B \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ et $C \begin{pmatrix} -1 \\ -5 \end{pmatrix}$.

• Déterminons une équation de la médiatrice de $[BC]$.

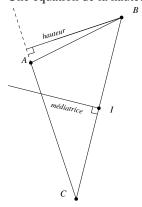
est un vecteur normal de la médiatrice qui admet donc une équation de la forme -2x - 8y + c = 0.

La médiatrice doit passer par $I\begin{pmatrix} 0 \\ -1 \end{pmatrix}$, le milieu de [BC].

Une équation de la médiatrice est donc : -2x - 8y - 8 = 0.

• Déterminons une équation de la hauteur issue de B dans le triangle ABC.

est un vecteur normal de cette hauteur qui admet donc une équation de la forme 2x - 6y + c = 0. La hauteur passe par le point *B*. On en déduit que $2 \times 1 - 6 \times 3 + c = 0 \Leftrightarrow c = 16$. Une équation de la hauteur est donc : 2x - 6y + 16 = 0.



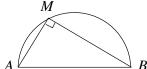
▶ **Remarque :** La droite *D* d'équation ax + by + c = 0 est perpendiculaire à la droite *D'* d'équation a'x + b'y + c' = 0 si et seulement si un vecteur directeur de D est orthogonal à un vecteur directeur de D'. Ainsi, $D \perp D' \Leftrightarrow \overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix} \cdot \overrightarrow{u'} \begin{pmatrix} -b' \\ a' \end{pmatrix} =$ $0 \Leftrightarrow (-b) \times (-b') + a \times a' = 0 \Leftrightarrow aa' + bb' = 0.$

Applications aux équations de cercle

et de rayon R, il suffit d'exprimer qu'un point $M\begin{pmatrix} x \\ y \end{pmatrix}$ Pour déterminer une équation du cercle de centre Ω au cercle si et seulement si $\Omega M^2 = R^2$. Une équation est donc : $(x-a)^2 + (y-b)^2 = R^2$.

et de rayon 3 est : $(x-1)^2 + (y-2)^2 = 9$. ightharpoonup Exemple : une équation du cercle de centre Ω

Pour déterminer une équation du cercle de diamètre [AB], il suffit d'exprimer qu'un point Mappartient au cercle si et seulement si le produit scalaire $\overrightarrow{AM} \cdot \overrightarrow{BM}$ est nul.



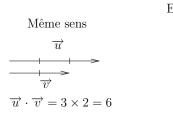
► Exemple :
$$M \begin{pmatrix} x \\ y \end{pmatrix}$$
 appartient au cercle de diamètre $[AB]$ avec $A \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ et $B \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ si et seulement si $\overrightarrow{AM} \begin{pmatrix} x-1 \\ y+2 \end{pmatrix}$. $\overrightarrow{BM} \begin{pmatrix} x-3 \\ y-4 \end{pmatrix} = 0$. Cela équivaut à $(x-1)(x-3) + (y+2)(y-4) = 0 \Leftrightarrow x^2 - x - 3x + 3 + y^2 - 4y + 2y - 8 = 0$. Une équation du cercle est donc : $x^2 + y^2 - 4x - 2y - 5 = 0$.

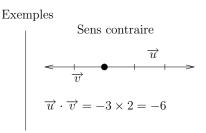
3 Produit scalaire et géométrie

3-1 Produit scalaire de deux vecteurs colinéaires

PROPRIÉTÉ

- Si \overrightarrow{u} et \overrightarrow{v} sont non nuls et de même sens alors $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}||$ (produit des longueurs)
- Si \overrightarrow{u} et \overrightarrow{v} sont non nuls et de sens contraires alors $\overrightarrow{u} \cdot \overrightarrow{v} = -\|\overrightarrow{u}\| \times \|\overrightarrow{v}\|$ (opposé du produit des longueurs)
- Si $\overrightarrow{u} = \overrightarrow{0}$ ou $\overrightarrow{v} = \overrightarrow{0}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

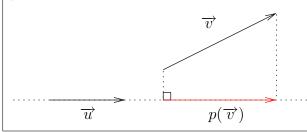




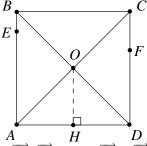
3-2 Produit scalaire de deux vecteurs non colinéaires

PROPRIÉTÉ

Etant donné deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} . Si on note $p(\overrightarrow{v})$, la projection orthogonale de \overrightarrow{v} sur une droite portant \overrightarrow{u} , alors on a : $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot p(\overrightarrow{v})$ (on est donc ramené au cas de deux vecteurs colinéaires)



► Exemple : ABCD est un carré avec AB = 3



- $\overrightarrow{AD} \cdot \overrightarrow{AB} = 0$ car \overrightarrow{AD} et \overrightarrow{AB} sont orthogonaux.
- $\bullet \overrightarrow{AD} \cdot \overrightarrow{CB} = -3 \times 3 = -9$ car \overrightarrow{AD} et \overrightarrow{CB} sont colinéaires et de sens contraires.
- $\overrightarrow{AD} \cdot \overrightarrow{AO} = \overrightarrow{AD} \cdot \overrightarrow{AH} = 3 \times 1, 5 = 4,5$ car le projeté orthogonal de \overrightarrow{AO} sur (AD) est \overrightarrow{AH} et que \overrightarrow{AD} et \overrightarrow{AH} sont colinéaires et de même sens.
- Les produits scalaires $\overrightarrow{AD} \cdot \overrightarrow{AC}$, $\overrightarrow{AD} \cdot \overrightarrow{BD}$ et $\overrightarrow{AD} \cdot \overrightarrow{EF}$ sont tous égaux entre eux. En effet, si on projette orthogonalement \overrightarrow{AC} , \overrightarrow{BD}

et \overrightarrow{EF} sur (AD) on obtient à chaque fois \overrightarrow{AD} . Donc tous ces produits scalaires sont égaux à $\overrightarrow{AD} \cdot \overrightarrow{AD} = 3 \times 3 = 9$.

Produit scalaire et angles

PROPRIÉTÉ

Dans un triangle \overrightarrow{ABC} , $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \times \cos \widehat{BAC}$.

- ▶ **Remarque**: De façon plus générale, $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u}, \overrightarrow{v})$.
- ► Exemple: Soit $A\begin{pmatrix} 1\\1 \end{pmatrix}$, $B\begin{pmatrix} 3\\2 \end{pmatrix}$ et $C\begin{pmatrix} 2\\4 \end{pmatrix}$.

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ et } AB = \sqrt{2^2 + 1^2} = \sqrt{5} \cdot \overrightarrow{AC} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \text{ et } AC = \sqrt{1^2 + 3^2} = \sqrt{10}.$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 2 \times 1 + 1 \times 3 = 5$$
, donc $\cos \widehat{BAC} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \times AC} = \frac{5}{\sqrt{5} \times \sqrt{10}} = \frac{5}{\sqrt{5} \times \sqrt{5} \times \sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$. On peut en déduire que la mesure en radians de l'angle géométrique \widehat{BAC} est égale à $\frac{\pi}{4}$.

PROPRIÉTÉ

Théorème d'Al Kashi

Dans un triangle ABC, $BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos \widehat{BAC}$

Lignes de niveau

a) Ensemble des points M tels que $MA^2 + MB^2 = k$

PROPRIÉTÉ

Soit I, le milieu du segment [AB] (avec $A \neq B$).

Pour tout point M, on a $MA^2 + MB^2 = 2IM^2 + \frac{AB^2}{2}$ (Théorème de la médiane).

Etant donné un réel k, on en déduit que l'ensemble des points M tels que $MA^2 + MB^2 = k$ est un cercle, ou un point ou l'ensemble vide.

► Exemple: Soit A et B deux points tels que AB = 2. On cherche à déterminer l'ensemble E des points M tels que $MA^2 + MB^2 = 2$

On utilise le théorème de la médiane :

On utilise le theoreme de la mediane :
$$MA^2 + MB^2 = 20 \Leftrightarrow 2IM^2 + \frac{AB^2}{2} = 20 \Leftrightarrow 2IM^2 + \frac{4}{2} = 20 \Leftrightarrow IM^2 = 9 \Leftrightarrow IM = 3 \text{ (car } IM > 0).$$
 L'ensemble E est donc le cercle de centre I et de rayon 3.

b) Ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$

- ▶ Méthode générale : on décompose \overrightarrow{MA} et \overrightarrow{MB} en passant par I le milieu de [AB].
- ► Exemple: Soit A et B deux points tels que AB = 4. On cherche à déterminer l'ensemble E des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 12$. $\overrightarrow{MA} \cdot \overrightarrow{MB} = 12 \Leftrightarrow \left(\overrightarrow{MI} + \overrightarrow{IA}\right) \cdot \left(\overrightarrow{MI} + \overrightarrow{IB}\right) = 12. \text{ Or, } \overrightarrow{IB} = -\overrightarrow{IA}.$

On a donc,
$$(\overrightarrow{MI} + \overrightarrow{IA}) \cdot (\overrightarrow{MI} - \overrightarrow{IA}) = 12 \Leftrightarrow MI^2 - IA^2 = 12 \Leftrightarrow MI^2 - 2^2 = 12 \text{ (car } IA = \frac{AB}{2}).$$

On en déduit que $M \in E \Leftrightarrow MI^2 = 16 \Leftrightarrow MI = 4$. E est donc le cercle de centre I et de rayon 4.

c) Ensemble des points M tels que $\overrightarrow{AM} \cdot \overrightarrow{u} = k$

▶ Méthode générale : On cherche un point particulier H appartenant à l'ensemble. On a alors $\overrightarrow{AH} \cdot \overrightarrow{u} = k$. Ainsi, $\overrightarrow{AM} \cdot \overrightarrow{u} = k$ $k \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{u} = \overrightarrow{AH} \cdot \overrightarrow{u} \Leftrightarrow \left(\overrightarrow{AM} - \overrightarrow{AH}\right) \cdot \overrightarrow{u} = 0 \Leftrightarrow \overrightarrow{HM} \cdot \overrightarrow{u} = 0 \Leftrightarrow \overrightarrow{HM} \perp \overrightarrow{u}.$

L'ensemble est alors la droite passant par H et de vecteur normal \overrightarrow{u} .

► Exemple: Soit A et B deux points tels que $\overrightarrow{AB} = 3$. On cherche à déterminer l'ensemble E des points M tels que $\overrightarrow{AM} \cdot \overrightarrow{AB} = -6$. Soit H le point de la droite (AB) tel que \overrightarrow{AH} et \overrightarrow{AB} soient de sens contraires et tel que $AH \times AB = 6 \Leftrightarrow AH = \frac{6}{3} = 2$.

Ainsi, on a bien
$$\overrightarrow{AH} \cdot \overrightarrow{AB} = -6$$
.
Dès lors, $\overrightarrow{AM} \cdot \overrightarrow{AB} = -6 \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AB} \Leftrightarrow \left(\overrightarrow{AM} - \overrightarrow{AH}\right) \cdot \overrightarrow{AB} = 0 \Leftrightarrow \overrightarrow{HM} \cdot \overrightarrow{AB} = 0 \Leftrightarrow \overrightarrow{HM} \perp \overrightarrow{AB}$.

L'ensemble E est alors la droite perpendiculaire à (AB) et passant par H.

