Exercice: Chapitre PRODUIT SCALAIRE

- On considère ABCD un quadrilatère quelconque non croisé.
 - a. Montrer que les deux réels :

$$AB^2 - BC^2$$
 et $DC^2 - AD^2$

peuvent chacun s'écrire comme un produit scalaire où intervient le vecteur AC.

COUP DE POUCE

Transformer les carrés en carrés scalaires.

b. En déduire que la somme des deux réels précédents est égale à :

$$\overrightarrow{2AC}.\overrightarrow{DB}$$

- c. Démontrer alors la propriété suivante :
 - « Un quadrilatère ABCD possède des diagonales orthogonales lorsque les sommes des carrés des côtés opposés sont égales. »

Quelques explications supplémentaires sur le coup de pouce

Il faut poser
$$AB^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$$
 c'est-à-dire $AB^2 = \overrightarrow{AB}^2$ et $BC^2 = \overrightarrow{BC} \cdot \overrightarrow{BC}$ c'est-à-dire $BC^2 = \overrightarrow{BC}$

Et faire intervenir le vecteur \overrightarrow{AC} en utilisant la relation de Chasles sur le vecteur \overrightarrow{AB} dans l'expression \overrightarrow{AB} $-\overrightarrow{BC}$ qui permet de calculer \overrightarrow{AB}^2 - \overrightarrow{BC}^2